Valid inequalities based on simple mixed-integer sets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Valid Inequalities Based on Simple Mixed-Integer Sets

In this paper we use facets of simple mixed-integer sets with three variables to derive a parametric family of valid inequalities for general mixed-integer sets. We call these inequalities two-step MIR inequalities as they can be derived by applying the simple mixed-integer rounding (MIR) principle of Wolsey (1998) twice. The two-step MIR inequalities define facets of the master cyclic group po...

متن کامل

Valid inequalities for mixed integer linear programs

This tutorial presents a theory of valid inequalities for mixed integer linear sets. It introduces the necessary tools from polyhedral theory and gives a geometric understanding of several classical families of valid inequalities such as lift-and-project cuts, Gomory mixed integer cuts, mixed integer rounding cuts, split cuts and intersection cuts, and it reveals the relationships between these...

متن کامل

Generalized Mixed Integer Rounding Valid Inequalities

We present new families of valid inequalities for (mixed) integer programming (MIP) problems. These valid inequalities are based on a generalization of the 2-step mixed integer rounding (MIR), proposed by Dash and Günlük (2006). We prove that for any positive integer n, n facets of a certain (n + 1)-dimensional mixed integer set can be obtained through a process which includes n consecutive app...

متن کامل

On Valid Inequalities for Mixed Integer p-Order Cone Programming

We discuss two families of valid inequalities for linear mixed integer programming problems with cone constraints of arbitrary order, which arise in the context of stochastic optimization with downside risk measures. In particular, we extend the results of Atamtürk and Narayanan (Math. Program., 2010, 2011), who developed mixed integer rounding cuts and lifted cuts for mixed integer programming...

متن کامل

On Minimal Valid Inequalities for Mixed Integer Conic Programs

We study mixed integer conic sets involving a general regular (closed, convex, full dimensional, and pointed) cone K such as the nonnegative orthant, the Lorentz cone or the positive semidefinite cone. In a unified framework, we introduce K-minimal inequalities and show that under mild assumptions, these inequalities together with the trivial cone-implied inequalities are sufficient to describe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2005

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-005-0599-y